Experimental Observations of CSR Bursts in Rings

Boris Podobedov, BNL

Coherent Synchrotron Radiation in Storage Rings Workshop Napa, CA, October 28-29, 2002

Scope, Outline and Caveats

- CSR: C is for Coherent -> Power ~ N²
- CSR bursts are reported at ALS, BESSY-II, MAX-I, NSLS VUV, SURF,...
- In this talk I attempt
 - Introduce experimental methods and review results
 - Stimulate a discussion
- I do NOT attempt
 - Be comprehensive
 - Establish precedence

References

ALS

- BROADBAND SELF-AMPLIFIED SPONTANEOUS COHERENT SYNCHROTRON RADIATION IN A STORAGE RING, J. Byrd et al, EPAC02
- OBSERVATION OF BROADBAND SELF-AMPLIFIED SPONTANEOUS COHERENT TERAHERZ SYNCHROTRON RADIATION IN A STORAGE RING, J. Byrd et al, to appear in PRL

BESSY-II

- COHERENT mm-RADIATION EXPERIMENTS AT THE BESSY II STORAGE RING, M. Abo-Bakr et al, EPAC00
- POWERFUL, STEADY STATE, COHERENT SYNCHROTRON RADIATION AT BESSY II, M. Abo-Bakr et al EPAC02
- STEADY-STATE FAR-INFRARED COHERENT SYNCHROTRON RADIATION DETECTED AT BESSY II, M. Abo-Bakr et al, PRL 88-25, 2002

MAX-1

OBSERVATION OF COHERENTSYNCHROTRON RADIATION FROM A 1 MM ELECTRON BUNCH AT THE MAX-I STORAGE RING, A. Andersson et all, SPIE vol. 3775, 1999

NSLS VUV

- INVESTIGATION OF COHERENT EMISSION FROM THE NSLS VUV RING, G. L. Carr et al, PAC99
- TWO-BEAM INTERFERENCE OF LONG WAVELENGTH SYNCHROTRON RADIATION, G. L. Carr et al, PAC01
- LONGITUDINAL DENSITY MODULATION OF UNSTABLE BUNCHES EMITTING COHERENT IR. B. Podobedov et al. PAC01
- OBSERVATION OF COHERENT SYNCHROTRON RADIATION FROM THE NSLS VUV RING, G. L. Carr et al, NIMA 463, 387, 2001
- ORIGIN OF LONGITUDINAL DENSITY MODULATION OF UNSTABLE BUNCHES IN THE NSLS VUV RING B. Podobedov et al. EPAC02
- COHERENT MICROWAVE SYNCHROTRON RADIATION IN THE VUV RING, S. L. Kramer and B. Podobedov, EPAC02
- DIRECT OBSERVATION OF BEAM IMPEDANCE ABOVE CUT-OFF, S.L. Kramer, to appear in PRST-AB

SURF

- SIMULATION INVESTIGATIONS OF THE LONGITUDINAL SAWTOOTH INSTABILITY AT SURF, K. Harkay, K.-J. Kim, and N. Sereno, PAC01
- SPONTANEOUS COHERENT MICROWAVE EMISSIONS AND THE SAWTOOTH INSTABILITY IN A COMPACT STORAGE RING, U. Arp et al, PRST-AB 4, 054401, 20001

Ring Parameters

	ALS	BESSY-II	MAX-1	NSLS VUV	SURF
Circumf., m	197	240	32.4	51	5.3
Energy, GeV	1.9	1.7	0.5	0.74	0.25
σ_{rms} , mm	7	5	3	150	80
λ due to CSR Cutoff, mm	8	4		12.5	67
I _{bunch} , mA	10	15	3	200	90

Parameter space is infinite

These are just rough examples

Experimental Methods & Measurements Reported

	experiment	ALS	BESSY-II	MAX-1	NSLS VUV	SURF
Coherent Emissions	RF & MW techniques	Χ	X		X	X
	Interferometry	Χ	X	Χ	Χ	
	Polarization	Χ	Χ	Χ	Χ	
" e-beam"	BPM signal analysis				Χ	Х
	Average Bunch Shape Photo-diodes + scopes etc	X	X	X	X	Χ
	Single-Shot Bunch Shape Streak Cameras, etc	X	X		X	X

RF & MW Techniques for Emissions Studies

Advantages

- ■Time and Freq. Domain
- ■Plenty of tools/hardware
- **■**Extends to low frequencies
- **■**Trivial polarization msrmnt

Challenges

- ■Painful to cover large BW
- **■**Expensive above 26 GHz
- **■**Dynamic range & rise-time
- Mixing Products

Emission Bursts

Interferometry

Advantages

- **■BW** extends into THz range
- **■**Convenient (no filter change)
- Sensitive (but slow) detectors

Challenges

- **■**Essentially freq. domain
- **■Slow** measurement
- Bursting data hard to interpret
- Ratio calculations

lamellar grating interferometer at NSLS U12IR

spectral range ~1-100 cm⁻¹

0.25 cm⁻¹ resolution

"light pipe" and mirror optics

thermal IR detector (bolometer)

Interferometry Results

Brookhaven Science Associates U.S. Department of Energy

Polarization Measurements

- Possible with interferometry or MW detection techniques
- **■**Emissions are often polarized in the bending plane Ex/Ey>100
- **■**Consistent with CSR
- ■Low frequency emissions at NSLS are not polarized -> CSR

"e-beam Measurements"

- Previous measurements characterize "very FIR photons" emitted from the beamline
- ■What's happening with e-beam?
- **■BPM** signal analysis
 - ■RF/MW techniques applicable
 - ■Typically run out of BW
- Average bunch shape measurements
- ■Instantaneous bunch shape (resolve bursts)

NSLS VUV Ring Streak Camera Results

■ Two 18-turn-average profiles

- Frequency agrees with $Z_{\parallel}(\omega)$
- Microbunching due to microwave instability? CSR

 Search for higher frequency modulation is still in progress

Conclusion

- No one-size-fits-all experimental technique
- Vastly different rings yet amazing similarities in burst structure, spectra, parameter dependence
- Reported P_{coh}/P_{incoh}~10⁴
- Spectral content may be complex
- Low frequency coherent emissions are not CSR
- Some evidence of non-CSR impedance causing low frequency emissions/beam modulation
- Direct experimental proof of bursts due to CSRinduced micro-bunching is missing

Final Thoughts

- **■**Coherent Bursts got with the Saw-tooth Instability
- ■There is always a continuous region at higher intensity
- **■Should reconsider going down to micro-Amps**

